S1=k∑n=02n+3(n+1)2(n+2)2=k∑n=0(1(n+1)2−1(n+2)2)=(11−14)+(14−19) +(19−116)+⋯+(1(k+1)2−1(k+2)2)=1−1(k+2)2
S2=k∑n=124n2−1=k∑n=1(12n−1−12n+1)=(11−13)+(13−15) +(15−17)+⋯+(12k−1−12k+1)=1−12k+1
So, S1−S2=(1−1(k+2)2)−(1−12k+1)⇒(k+1)2+2(2k+1)(k+2)2=36337×400⇒(k+2)2=400⇒k=18