Given ∫sin(x)dx=−cos(x) and ∫cos(x)dx=sin(x). If f(x)=36∫(sin(2x)+cos(3x)]dx, then find the value of −f(π) [ take constant of integration equal to zero]
We saw that ∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dxand ∫f(ax+b)dx=F(ax+b)a+c, where ∫f(x)dx=F(x)
We will solve this problem using these two theorems on integration.
We are given ∫sin(x)dx=−cos(x) and ∫cos(x)dx=sin(x)
We want to find, −f(π) For this we will find f(x) first
We have,
f(x)=36∫(sin(2x)+cos(3x)]dx
Let’s consider ∫(sin(2x)+cos(3x)]dx
∫(sin(2x)+cos(3x)]dx=∫sin(2x)dx+∫cos(3x)dx
We will now find these two integrals separately and proceed
∫sin(2x)dx=−cos(2x)2and ∫cos(3x)dx=sin(3x)3⇒36∫(sin(2x)+cos(3x)]dx=36sin(3x)3+36−cos(2x)2
= 12 sin3x -18cos2x.
We are not including the constant of integration, because it is given as zero in question.
So we get f(x) = 12 sin3x -18cos2x
⇒f(π)=12sin3π−18cos2π=12×0−18×1=−18⇒−f(π)=18