Given standard equation of ellipse,
x2a2+y2b2=1,a>b,
with eccentricity e.
Match the following
a)Major axisi)2a(1−e2)b)Minor axisii)y=0c)Double ordinateiii)x=0d)Latus Rectum lengthiv)x=−aev)√1−b2a2
a=ii, b=iii, c=iii, d=i
Let's deduce what all we can infer from
⇒x2a2+y2b2=1
→focus=(ae,0),(−ae,0)→directrix→x=ae,x=−ae→eccentricity⇒√1−b2a2→major Axis⇒y=0 as a>b→minor Axis⇒x=0 as b<a→Vertices⇒(a,0),(−a,0)→Double ordinate⇒perpendicular chord to major Axis⇒x=0(amongst given options passing through ellipse)Latus rectum is defined as perpendicular chord through focusWe know,⇒x2a2+y2b2=1Focus=(ae,0)
Let's calculate the y coordinates of this chord. We know x coordinate is (ae,o) because it's the focus.
Substituting in ellipse equation
⇒(ae)2a2+y2b2=1y2=b2(1−e2)=a2(1−e2)(1−e2)y=a(1−e2)∴length of latus Rectum=2a(1−e2)a=iib=iiic=iiid=i