Given standard equation of ellipse,
x2a2+y2b2=1,a>b,
with eccentricity e
Match the following
a) Focusi)(ae,0)b) Directrixii)(a,0)c) Eccentricityiii)x=aed) Verticesiv)(−ae,0)v)x=−aevi)√1−b2a2
a=i,iv, b=iii,v, c=vi, d=ii
Let's deduce what all we can infer from the given equation of the ellipse
⇒x2a2+y2b2=1
→focus=(ae,0),(−ae,0)→directrix⇒x=ae, x=−ae→eccentricity⇒√1−b2a2→major Axis⇒y=0 as a>b→minor Axis⇒x=0 as b<a→Vertices⇒(a,0),(−a,0)∴a→i,iv, b→iii,v, c→vi, d→ii