Given standard equation of ellipse, x2a2+y2b2=1,a>b, with eccentricity e
Match the following
a)Focusi) (ae,0)b)Directrixii) (a,0)c)Eccentricityiii) x=aed)Verticesiv) (-ae,0)v) x=-aevi)√1-b2a2
Let's deduce what all we can infer from ⇒x2a2+y2b2=1
→focus=(ae,0),(−ae,0)→directrix⇒x=ae,x=−ae→eccentricity⇒√1−b2a2→majorAxis⇒y=0 as a>b→minorAxis⇒x=0 as b<a→Vertices⇒(a,0),(−a,0)Therefore,a→i,ivb→iii,vc→vid→ii