Given ∫ sinx dx = -cosx and ∫ cosx dx = sinx. If f(x) = 36 ∫ [sin (2x) + cos (3x)] dx, then find the value of -f(π) [ take constant of integration equal to zero]
We saw that ∫ (f(x)+g(x)) dx = ∫ f(x) dx+ ∫ g(x)dx and ∫ f(ax+b) dx=F(ax+b)a+c, where ∫ f(x) dx = F(x)
We will solve this problem using these two theorems on integration.
We are given ∫ sinx dx = -cosx and ∫ cosx dx = sinx.
We want to find,- f(π) For this we will find f(x) first
We have,
f(x) = 36 ∫ [sin (2x) + cos (3x)] dx
Let’s consider ∫ [sin (2x) + cos (3x)] dx
∫ [sin (2x) + cos (3x)] dx = ∫ sin (2x) dx+ ∫ cos (3x)dx
We will now find these two integrals separately and proceed
∫ sin (2x) =−cos2x2 and ∫cos (3x) = sin3x3
⇒ 36 ∫ [sin (2x) + cos (3x)] = 36sin3x3+36−cos2x2
= 12 sin3x -18cos2x.
We are not including the constant of integration, because it is given as zero in question.
So we get f(x) = 12 sin3x -18cos2x
⇒f(π)=12 sin 3(π)−18 cos 2(π)=12×0−18×1=−18⇒−f(π)=18