1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Solving Simultaneous Trigonometric Equations
Given that ...
Question
Given that
3
sin
θ
+
4
cos
θ
=
5
w
h
e
r
e
θ
∈
(
0
,
π
2
)
.
Find the value of
2
sin
θ
+
cos
θ
+
4
tan
θ
+
3
cot
θ
Open in App
Solution
3
sin
θ
+
4
cos
θ
=
5
3
5
sin
θ
+
4
3
cos
θ
=
1
Let
cos
t
=
3
5
So,
sin
t
=
√
1
−
cos
2
t
=
√
1
−
a
2
s
=
√
16
25
=
4
3
sin
θ
cos
t
+
cos
θ
sin
t
=
1
sin
(
θ
+
t
)
=
1
θ
+
t
=
π
2
θ
=
π
2
−
t
So,
2
sin
θ
+
cos
θ
+
4
tan
θ
+
3
cot
θ
=
2
sin
(
π
2
−
t
)
+
cos
(
π
2
−
t
)
+
4
(
cos
(
π
2
−
t
)
+
3
cot
(
π
2
−
t
)
)
=
2
cos
t
+
sin
t
+
4
cot
t
+
3
tan
t
=
2
×
3
5
+
4
5
+
4
cos
t
sin
t
+
3
sin
t
cos
t
=
6
5
+
4
5
+
4
×
3
5
×
5
5
+
3
×
4
3
×
5
3
=
10
5
+
3
+
4.2
+
7
=
9
(Answer)$
Suggest Corrections
0
Similar questions
Q.
If
3
cot
θ
−
4
=
0
, then the value of
3
cot
θ
+
4
cos
θ
3
sin
θ
−
2
cos
will be
Q.
If
1
2
sin
−
1
(
3
sin
θ
5
+
4
cos
θ
)
=
π
4
, then
4
tan
θ
is equal to
Q.
If
3
cot
θ
=
2
, find the value of
2
sin
θ
−
3
cos
θ
2
sin
θ
+
3
cos
θ
Q.
Eliminate
θ
,
if
(
ii
)
x
=
2
cos
θ
-
3
sin
θ
,
y
=
cos
θ
+
2
sin
θ
Q.
If 3 cot θ = 4, find the value of
4
cos
θ
-
sin
θ
2
cos
θ
+
sin
θ
.