To prove 1b+c,1a+c,1b+a are in A.P
Given that a2,b2,c2 are in a A.P
Therefore,
2b2=a2+c2b2+b2=a2+c2b2−a2=c2−b2(b+a).(b−a)=(c+b)(c−b)(b−a)(c+b)=(c−b)(b+a)Now dividing both sides by 1(c+a)(b−a)(c+b)(c+a)=(c−b)(b+a)(c+a)(b+c)−(c+a)(b+c)(c+a)=(c+a)−(a+b)(a+b)(c+a)1c+a−1b+c=1a+b−1c+a2c+a=1a+b+1b+c
Therefore,
1b+c,1c+a and 1a+b are in A.P.