Given that A=[111011], B=[0−2−34], I=[1001]. Find A+3B+4I.
Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
23+−45+715+−1120=?
(a) −15
(b) −415
(c) −1360
(d) −730
Compute each of the following:
(a) 15+(−5)+15+(−7)
(b) 34+(−20)+16+(−10)
(c) 32+16+9+(−70)
(d) −3+(−2)+(−5)+7