Given that,
cosx2.cosx4.cosx8.......=sinxx......(1)
Prove that,
122sec2x2+124sec2x4+.......=csc2x−1x2
Proof:-
By equation (1) to and we get,
cosx2.cosx4.cosx8.......=sinxx
Using summation and log both side and we get,
∞∑k=1logcos(x2k)=logsinx−logx
On differentiating this equation with respect to x and we get,
∞∑k=1−12ktan(x2k)=cotx−1x
Again differentiating and we get,
∞∑k=1−122ksec2(x2k)=−csc2x+1x2
And solving summation,
⇒−(122sec2x2+124sec2x4+.......)=−(csc2x−1x2)
⇒122sec2x2+124sec2x4+.......=csc2x−1x2
Hence proved.