The given n observation are x1,x2..xn
Mean = ¯x
variance = σ2
∴σ2=1nn∑i=lyi(xi−¯x)2 ....(i)
If each observation is multiplied by a and the new observation are yi then
yi=axi,i.e,xi=1ayi
∴¯y=1nn∑i=lyi=1nn∑i=laxi=ann∑i=lxi=¯ax,(∵¯x=1nn∑i=1xi)
Therefore mean of the observation, ax1,ax2....axn is ¯ax
Substituting the values of xi and ¯x in (1) we obtain
σ2=12n∑i=l(1ayi−1a¯y)2
⇒a2σ2=1nn∑i=l(yi−¯y)2
Thus the variance of the observation ax1,ax2...axn is a2σ2