g(a)=l−hh∫t−a(1−a)a−1dt if h⟶∞
10∫t−a(1−a)a−1dt
g′(a)=10∫[t−alnt(1−t)a−1+t−a(1−t)a−1ln(1−t)]dtg′(12)=10∫⎡⎢⎣t−12lnt(1−t)12−1+t−12(1−t)12−1ln(1−t)⎤⎥⎦dtg′(12)=10∫⎡⎢⎣t−12(1−t)−12⎤⎥⎦(−lnt+(1−t)dt)...........(1)g′(12)=10∫⎡⎢⎣t12(1−t)−12⎤⎥⎦(lnt−(1−t)dt)...........(2)
Adding (1) and (2) we get
g′(12)=0