log10sinx+log10cosx=log10(sinxcosx)=−1
Therefore, sinxcosx=110 ⋯(1)
Now, manipulate the second equation.
log10(sinx+cosx)=12(log10n−log1010)
⇒log10(sinx+cosx)=log10√n10
⇒sinx+cosx=√n10
⇒(sinx+cosx)2=n10
⇒sin2x+cos2x+2sinxcosx=n10
Substituting the value for sinxcosx from (1),
1+2(110)=n10
⇒n=12