We have
nCn−r+3 nCn−r+1+3. nCn−r+2+ nCn−r+3= xCr
=(nCn−r+ nCn−r+1)+2( nCn−r+1+ nCn−r+2)+( nCn−r+2+ nCn−r+3)= xCr
= n+1Cn−r+1+2. n+1Cn−r+2+ n+1Cn−r+3= xCr
= (n+1Cn−r+1+ n+1Cn−r+2)+( n+1Cn−r+2+ n+1Cn−r+3)= xCr
= n+2Cn−r+2+ n+2Cn−r+3= xCr
= n+3Cn−r+3= xCr
= n+3Cr= xCr
Hence, x=n+3
∴k=3