Given that (¯¯¯x) is the mean and σ2 is the variance of n observations x1,x2,....xn. Prove that the mean and variance of the observations ax1,ax2,ax3...axnare a¯¯¯x and a2σ2 respectively (a≠0)
Here ¯xx1+x2+x3+....+xnn=∑xn
Also x21+x22+x23+....+x2nn=∑x2n
New mean = ax1+ax2+ax3+...+axnn
Also σ2=n(x21+x22+x23+....x2n)−(x1+x2+x3+....+xn)n2
New variance = n(a2x21+a2x22+a2x23+...a2x2n)−(ax1+ax2+ax3+...+ax2n)2n2
= a2[n(x21+x22+x23+....+x2n)−(x1+x2+x3+...+xn)n2]
= a2σ2.