The correct option is D θ1=60∘
Condition (1):
→P+→Q=→R
⇒→R−→P=→Q
Taking magnitude of the vector followed by squaring,
R2+P2−2RPcosθ1=Q2
2−2cosθ1=1 (∵P=Q=R)
cosθ1=12⇒θ1=60∘
Condition (2):
→P+→Q+→R=0
⇒→P+→R=−→Q
Taking magnitude of the vector followed by squaring,
P2+R2+2PRcosθ2=Q2
cosθ2=−12⇒θ2=120∘
∴2θ1=θ2=120∘
Therefore, options (B), (C) & (D) are the correct answer.