Given :→u=^i−2^j+3^k,→v=2^i+^j+4^k,→w=^i+3^j+3^k and (→u.→R−15)^i+(→v.→R−30)^j+(→w.→R−20)^k=→0
Let →R=x^i+y^j+z^k
So, →u.→R=15⇒x−2y+3z=15⋯(i)
→v.→R=30⇒2x+y+4z=30⋯(ii)
→w.→R=25⇒x+3y+3z=25⋯(iii)
On solving, we get: x=4,y=2 and z=5
Hence, |→R|=√16+4+25=√45
So, the greatest integer less than or equal to |→R| is 6