Given that P(AUB)=0.76 and P(AUB')=0.87, find P(A):
Find the probability of event A:
Given: P(AUB)=0.76 and P(AUB')=0.87
We know that A∪B∩A∪B'=A .
So,P(A∪B)∩(A∪B')=P(A)Recall the inclusion/exclusion principle:
P(A∪B)∩(A∪B')=P(A∪B)+P(A∪B')-P(A∪B)∪(A∪B')As A∪B∪A∪B'=U (the universal set), we have
P(A)=P(A∪B)+P(A∪B')-P(U)P(A)=0.76+0.87-1P(A)=0.63
Hence, P(A)=0.63
Find the sum of 13.9+109.003+0.87 ?
For a set A consider the following statements:
1.A∪P(A)=P(A)
2.{A}∩P(A)=A
3.P(A)-{A}=P(A) where P denotes power set.
Which of the statements given above is/are correct?
Find the value of : [(0.87)3 + (0.13)3] ÷ [(0.87)2 + (0.13)2 - 0.87 × 0.13] .