Given that sin A= 12 and cosB =1√2, then find the value of (A+B) (where A and B are acute angles).
30°
45°
75°
15°
sin A = 12
⇒ A = 30∘
cos B = 1√2
⇒ B = 45∘
Thus, A + B = (30∘ + 45∘) = 75∘
Given that sinA=12 and cosB=1√2, then find the value of (A+B).
Given that sin A = 12 and cos B = 1√2, then the value of (A + B) is ____. (Here, 0<A+B≤90∘)
If sinA=12 and cosB=1√2, then find the value of (A+B).
Given that sin A=12 and cosB=1√2, then the value of (A + B) is: