If sinθ=abthen cosθ is equal to.
bb2-a2
ba
b2-a2b
ab2-a2
Explanation for the correct Option:
Find the required value.
Put the Values in the Identity
cos2θ=1-sin2θ[∵sin2θ+cos2θ=1]⇒cos2θ=1-(ab)2[sinθ=ab]⇒cosθ=b2-a2b
Hence, option C is the correct answer.
Name the property where a,bandc
a+b=b+a: