Trigonometric Ratios of Compound Angles: Tangent and Cotangent Functions
Given that ta...
Question
Given that tanA,tanB are the roots of the equation x2−px+q=0, then the value of sin2(A+B) is
Open in App
Solution
From the given condition we have tanA+tanB=p,tanAtanB=q
So that tan(A+B)=tanA+tanB1−tanAtanB=p1−q
And sin2(A+B)=sin2(A+B)cos2(A+B)×cos2(A+B)=tan2(A+B)sec2(A+B)=tan2(A+B)1+tan2(A+B)=⎡⎢⎣p2(1−q)2⎤⎥⎦⎡⎢⎣1+p2(1−q)2⎤⎥⎦=p2p2+(1−q)2