Given that tan A, tan B are the roots of the equation x2 - px + q = 0, then the value of sin2(A + B) is
tan A + tan B = p, tan A tan B = q
tan(A + B) = p1−q, sin2(A + B) = tan2(A + B) sec2(A + B)
If tan A, tan B are the roots of x2−Px+Q=0 the value of sin2 (A+B)=(where P, Q ϵ R)
(q+p)×(q−p)=?
If α,β are the roots of the equation x2+px+1=0;γ,δ the roots of the equation x2+px+1=0; then (α−γ)(α+δ)(β−γ)(β+δ)