Given that the angles α,β,γ are connected by the relation - 2tan2αtan2βtan2γ+tan2αtan2β+tan2βtan2γ+tan2γtan2α=1 find the value of sin2α+sin2β+sin2γ
Open in App
Solution
We have 2 = 1 + 1 tan2βtan2γ(1+tan2α)+tan2γtan2α(1+tan2β)=1−tan2αtan2β or sin2βsin2γ+sin2γsin2αcos2αcos2βcos2γ=cos2αcos2β−sin2αsin2βcos2αcos2β sin2βsin2γ+sin2γsin2α=(1−sin2γ). [(1−sin2α)(1−sin2β)−sin2αsin2β] or sin2βsin2γ+sin2γsin2α=(1−sin2γ)[1−sin2α−sin2β] or 0=1−sin2γ−sin2α−sin2β or ∑sin2α=1.