wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given that the angles α,β,γ are connected by the relation -
2tan2αtan2βtan2γ+tan2αtan2β+tan2βtan2γ+tan2γtan2α=1
find the value of sin2α+sin2β+sin2γ

Open in App
Solution

We have 2 = 1 + 1
tan2βtan2γ(1+tan2α)+tan2γtan2α(1+tan2β)=1tan2αtan2β
or sin2βsin2γ+sin2γsin2αcos2αcos2βcos2γ=cos2αcos2βsin2αsin2βcos2αcos2β
sin2βsin2γ+sin2γsin2α=(1sin2γ).
[(1sin2α)(1sin2β)sin2αsin2β]
or sin2βsin2γ+sin2γsin2α=(1sin2γ)[1sin2αsin2β]
or 0=1sin2γsin2αsin2β
or sin2α=1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon