The correct option is C x:y:z≡√1−a2:√1−b2:√1−c2
Given that the system of equations x=cy+bz,y=az+cx,z=bx+ay has nonzero solutions.
Let x=cy+bz ----(1)
y=az+cx ------(2)
z=bx+ay ------(3)
substituting equation (1) in (2) gives
y=az+c(cy+bz)
⇒y(1−c2)=(a+bc)z
⇒yz=a+bc1−c2 ---(4)
substituting equation (1) in (3) gives
z=b(cy+bz)+ay
⇒z(1−b2)=(a+bc)y
⇒yz=1−b2a+bc ----(5)
from (4) and (5)
y2z2=a+bc1−c21−b2a+bc=1−b21−c2
⇒yz=√1−b2√1−c2
Similarly xy=√1−a2√1−b2
∴x:y:z=√1−a2:√1−b2:√1−c2
Hence, option D.