The correct options are
A [r]≠2
C 3<r<2√3
arg(z)=π6∣∣z−2√3i∣∣=r
Let, z=x+iy
y=x√3 ...(1)
x2+(y−2√3)2=r2 ... (2)
Substitute equation (1) in equation (2), we get
⇒(y√3)2+(y−2√3)2=r2⇒4y2−4√3y+12−r2=0
Since the straight line intersects the circle in two distinct points.
∴b2−4ac>0 for the above quadratic
⇒48−16(12−r2)>0∴r>3&r≠2
For arg(z)=π6, y>0.
Hence, the product of the roots of y must be positive.
Hence,
12−r2>0. Hence, r<2√3
Hence, 3<r<2√3.
Hence, options A and D are correct.