Let f(x)=x3–6x2+3x+10
Given that, a, (a + b) and (a + 2b) are the zeroes of f(x) Then,
sum of zeros = −ba
⇒ a+(a+b)+(a+2b)=−(−6)1
⇒ 3a+3b=6
⇒ a+b+2
Sum of product of two zeroes at a time =ca=(coefficient of xcoefficient of x3)
⇒ a(a+b)+(a+b)(a+b)+a(a+2b)=31
⇒ a(a+b)+(a+b)(a+b)+b+a(a+b)+b=3
⇒ 2a+2(2+b)+a(2+b)=3 [ using Eq. (i)]
⇒ 2a+2(2+2–a)+a(2+2–a)=3 [using Eq. (i)]
⇒2a+8–2a+4a–a2=3
⇒ −a2+8=3–4a
⇒ a2–4a–5=0
Using factorization method
a2–5a+a–5=0
⇒ a(a–5)+1(a–5)=0
⇒ (a−5)(a+1)=0
⇒ a=−1,5
When a = - 1 , then b = 3
When a = 5, then b = - 3
∴ Required zeroes of f(x) are
When a = - 1 and b = 3
Then, a, (a + b), (a + 2) = - 1, ( - 1 + 3), ( - 1 + 6) or – 1, 2, 5
When a = 5 and b = - 3, then
a, (a+ b), (a + 2b) =5, (5 – 3), (5 – 6) OR (5, 2, -1).
Hence, the required values of a and b are a = -1 and b = 3 or a = 5, b = -3,
and the zeroes in both cases are −1, 2 and 5.