Step 1: Given
→A+→B+→C=0 . . . . . . (1)
Let:
A=B
C=√2A=√2B
Step 2: Formula used
MagnitudeofresultantoftwovectorsAandB=√A2+B2+2AB cos θ
Step 3: Calculation of angle
Let θ be the angle between the vectors →A and →B.
We can write equation (1) as −→C=→A+→B
Here, −→C is the resultant of vectors →A & →B.
∴ |−C|=√A2+B2+2AB cos θ
⇒ C=√A2+B2+2AB cos θ
Using given conditions, we get:
⇒ √2A=√A2+A2+2A2 cos θ
⇒ √2A=√2A2+2A2 cos θ
⇒ √2A=√2A×√1+cos θ
⇒ 1+cos θ=1
⇒cosθ=0
⇒cosθ=cos900
Comparingbothsides,weget
⇒θ=90∘
Hence, angle between equal vectors is θ=90∘.