Factorisation of Quadratic Polynomials - Factor Theorem
Given that x2...
Question
Given that x2+x−6 is a factor of 2x4+x3−ax2+bx+a+b−1, then the value of a and b is
Open in App
Solution
We have, x2+x−6=(x+3)(x−2)
Let, f(x)=2x4+x3−ax2+bx+a+b−1
Now, f(−3)=2(−3)4+(−3)3−a(−3)2+b(−3)+a+b−1=0 ⇒134−8a−2b=0 ⇒4a+b=67.....(i) f(2)=2(2)4+(2)3−a(2)2+b(2)+a+b−1=0 ⇒39−3a+3b=0 ⇒a−b=13.......(ii)
solving (i) and (ii), we get a=16 and b=3