CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Given that $$x - \sqrt 5 $$ is a factor of polynomial $${x^3} - 3\sqrt 5 {x^2} - 5x + 15\sqrt 5 $$, find all zeroes of the polynomial.


Solution

Divisor $$x-\sqrt5$$
Polynomial $$x^3-3\sqrt5 x^2 -5x+15\sqrt5$$
Quotient$$=x^2-2\sqrt{5}x-15$$
To find other zeroes , we will use common factor theorem
$$x^2-3\sqrt5+\sqrt5 x-15$$
$$x(x-3\sqrt5)+\sqrt5(x-3\sqrt5)$$
$$(x+\sqrt5)(x-3\sqrt5)$$
To find zeroes , equals the factors to zero.
other zeroes $$=-\sqrt5 ,3\sqrt5$$

Maths

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image