The correct option is D x=1 and y=2
Given, x1+2i+y3+2i=5+6i8i−1
x(1−2i)1−4i2+y(3−2i)9−4i2=(5+6i)(8i+1)(8i)2−12
x−2xi5+3y−2yi13=40i+5−48+6i−64−1
13x−26xi+15y−10yi65=−43+46i−65
(13x+15y)−i(26x+10y)=43−46i
Equating real and imaginary parts, we get
13x+15y=43 (1)
13x+5y=23 (2)
Solving for x and y, we get x=1 and y=2
Ans: B