Given that x,y,z are positive real such that xyz=32. If the minimum value of x2+4xy+4y2+2z2 is equal to m, then the value of m16 is?
Find the value m to get m16:
Now, x2+4xy+4y2+2z2=x2+2xy+2xy+4y2+z2+z2
Since Arithmetic Mean ≥ Geometric Mean
∴x2+2xy+2xy+4y2+z2+z26≥(16x4y4z4)16x2+2xy+2xy+4y2+z2+z2≥6(24×324)16x2+2xy+2xy+4y2+z2+z2≥6(24×(25)4)16x2+2xy+2xy+4y2+z2+z2≥6(24×220)16x2+2xy+2xy+4y2+z2+z2≥6(224)16x2+2xy+2xy+4y2+z2+z2≥6×16
Thus m=6×16,
So, m16=6
Hence, the value of m16 for x2+4xy+4y2+2z2is 6.