wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given the following data, calculate coefficient of variation:
Age 20−30 30−40 40−50 50−60 60−70 70−80 80−90
Number of Students 3 61 132 153 140 51 2

Open in App
Solution

Age Mid Value
(m)
Frequency
(f)

Deviation from Assumed mean
(dx = X − A)
(A = 55)
dx'=dxi=dx10 f×dx'=fdx' f×dx'2=fdx'2
20−30
30 −40
40 −50
50 −60
60 −70
70 −80
80 −90
25
35
45
55=A
65
75
85
3
61
132
153
140
51
2
−30
−20
−10
0
10
20
30
−3
−2
−1
0
1
2
3
−9
−122
−132
0
140
102
6
27
244
132
0
140
204
18
N = 542 Σfdx'= -15 Σfdx'2 =765

Mean (X)=A+Σfdx'N×ior, X=55+-15542×10or, X =55-.28 X =54.72Standard Deviation (σ)=Σfdx'2N-Σfdx'N2×ior, σ =765542--155422×10or, σ =1.41--0.032×10or, σ =1.41-0.0009×10or, σ =1.187×10 σ =11.87Coefficient of Variation (CV)=σX×100or, CV=11.8754.72×100or, CV=119054.72CV =21.69

Hence, Coefficient of variation is 21.69

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mean of Ungrouped Data
STATISTICS
Watch in App
Join BYJU'S Learning Program
CrossIcon