The correct option is B [4−142]
A=[1−14−1] and B=[1−12−2]
Here, A is non-singular matrix but B is singular.
Hence, only A−1 exists.
Now, XA=B
⇒X=BA−1
and AY=B⇒Y=A−1B
A−1=13[−11−41]
⇒X=BA−1=13[1−12−2][−11−41]=[1020]
and Y=A−1B=13[−11−41][1−12−2]=13[1−1−22]
∴3(X+Y)=[3060]+[1−1−22]=[4−142]