Distance between Two Points on the Same Coordinate Axes
Given the poi...
Question
Given the points A(0, 4) and B(0, -4) the equation of the locus of the point P(x, y) such that | AP - BP | = 6 is
A
9x2−7y2+63=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
9x2−7y2−63=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
7x2−9y2+63=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
7x2−9y2−63=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C9x2−7y2+63=0 Given−P(x,y)isapointsuchthatthedifferenceofitsdistancesfromA(0,4)&B(0,−4)isAP−BP=6.Toobtain−theequationofthelocusofP(x,y)=?Solution−Weshallusedistanceformulad=√(x1−x2)2+(y1−y2)2toobtainAP,BP.AP=√(x−0)2+(y−4)2=andBP=√(x−0)2+(y+4)2.NowAP−BP=6√(x−0)2+(y−4)2−√(x−0)2+(y+4)2=6⟹√(x−0)2+(y−4)2=6+√(x−0)2+(y+4)2⟹x2+(y−4)2=36+x2+(y+4)2+12√(x−0)2+(y+4)2⟹−16y−36=12√(x−0)2+(y+4)2⟹−4y−9=3√(x−0)2+(y+4)2⟹16y2+72y+81=9x2+9y2+72y+144⟹9x2−7y2+63=0.ThisisthelocusofP.Ans−OptionA.