sinAsinBsinC=p, cosAcosBcosC=q
∴tanAtanBtanC=p/q=S3
∴S1=S3=tanA+tanB+tanC
If S2=tanAtanB+tanBtanC+tanCtanA
=sinAsinBcosC+sinBsinCcosA+sinCsinAcosBcosAcosBcosC
Nr is ∑(twosinesonecos).
=1+cosAcosBcosCcosAcosBcosC=1+qq
Hence the required equation whose roots are tanA,tanB,tanC is
x3−x2S1+xS2−S3=0
or x3−pqx2+(1+qq)x−pq=0
or qx3−px2+(1+q)x−p=0.