Given the sequence of numbers x1,x2,x3,........x2013 which satisfies x1x1+1=x2x2+3=x3x3+5=......=x2013x2013+4025, nature of the sequence is
Given,
x1x1+1=x2x2+3=x3x3+5=........=x2013x2013+4025
⇒x1+1x1=x2+3x2=x3+5x3=........=x2013+4025x2013 (Taking reciprocal)
⇒1+1x1=1+3x2=1+5x3=........=1+4025x2013
⇒1x1=3x2=5x3=........=4025x2013
⇒x11=x23=x35=........=x20134025=k(say)
Therefore, x1=k, x2=3k, x3=5k,..... and so on.
⇒x1−x2=x2−x3=x3−x4=.......=2k.
Since the difference between two consecutive terms is constant(2k), the given series is an A.P.
Hence, Option A is correct.