wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question


Given the zeroes of a cubic polynomial f(x)=2x3+x25x+2;12,1,2 Verify the relation between its zeros and coefficients.

Open in App
Solution

2 x ³ plus x ² minus 5 x plus 2Therefore, α=12β=1,γ=2
now,
Sum of roots =fraction numerator negative left parenthesis c o e f f i c i e n t space o f space x ² right parenthesis over denominator left parenthesis c o e f f i c i e n t space o f space x ³ right parenthesis end fraction
fraction numerator negative space left parenthesis 1 right parenthesis space over denominator 2 end fraction equals space 1 half space plus space 1 space minus 2 space space
L H S space equals R H S

Products of roots = fraction numerator negative left parenthesis space c o n s tan t space right parenthesis over denominator c o e f f i c i e n t space o f space x ³ end fraction
fraction numerator negative space left parenthesis 2 right parenthesis space over denominator 2 end fraction equals space 1 half space cross times space 1 space cross times space minus 2 space
minus 1 equals negative 1
L H S equals R H S
Sum of products of two consecutive roots = fraction numerator left parenthesis space c o e f f i c i e n t space o f space x right parenthesis over denominator c o e f f i c i e n t space o f space x ³ end fraction
fraction numerator negative 5 over denominator 2 end fraction equals space 1 half space cross times space 1 space plus space 1 space cross times space left parenthesis negative 2 right parenthesis space plus space left parenthesis negative 2 right parenthesis space cross times space 1 half space space
fraction numerator negative 5 over denominator 2 end fraction equals space fraction numerator negative 5 over denominator 2 end fraction
LHS=RHS

Hence Verified

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relationship between Zeroes and Coefficients of a Polynomial
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon