p(x)=3x3–10x2–27x+10
Therefore, α=5,β=−2,γ=13
Comparing the given polynomial with
p(x)=ax3+bx2+cx+d
We get a=3,b=−10,c=−27 and d=10
Now, (α+β+γ)=(5−2+13)=103=−ba
(αβ+βγ+γα)=[5×(−2)+(−2)×13+13×5)]=(−10−23+53)=−30−2+53=−273=ca
and αβγ=[5×(−2)×13]=−103=−da