Given, A=⎡⎢⎣1−231411−32⎤⎥⎦ and B=⎡⎢⎣11−5−14−1−12−716⎤⎥⎦
AB=⎡⎢⎣1−231411−32⎤⎥⎦⎡⎢⎣11−5−14−1−12−716⎤⎥⎦
=⎡⎢⎣11+2−21−5+2+3−14−4+1811−4−7−5−4+1−14+8+611+3−14−5+3+2−14−6+12⎤⎥⎦
=⎡⎢⎣−8000−8000−8⎤⎥⎦
∴AB=−8I3
⇒−18(B)=A−1
The given system of equations can be written as,
⎡⎢⎣1−231411−32⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣6121⎤⎥⎦
Or, AX=C
Where,
X=⎡⎢⎣xyz⎤⎥⎦ and C=⎡⎢⎣6121⎤⎥⎦
As A exists, the given system of equations has a unique solution
∴X=A−1C
⇒X=(−18B)C
=−18⎡⎢⎣11−5−14−1−12−716⎤⎥⎦⎡⎢⎣6121⎤⎥⎦
=−18⎡⎢⎣66−60−14−6−12+2−42+12+6⎤⎥⎦
⎡⎢⎣xyz⎤⎥⎦=−18⎡⎢⎣−8−16−24⎤⎥⎦
⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣123⎤⎥⎦
⇒x=1,y=2,z=3
Hence the solution of equations is,
x=1,y=2,z=3