Given →α=3^i+^j+2^k , →β=^i−2^j−4^k are the position vectors of the points A and B. Then the distance of the point −^i+^j+^k from the passing through B and perpendicular to AB is
We have,
→α=3ˆi+ˆj+2ˆk
→β=ˆi−2ˆj−4ˆk
So,
−−→AB=→β−→α
−−→AB=(ˆi−2ˆj−4ˆk)−(3ˆi+ˆj+2ˆk)
−−→AB=ˆi−2ˆj−4ˆk−3ˆi−ˆj−2ˆk
−−→AB=−2ˆi−3ˆj−6ˆk
Now, equation of plane passing through the point and perpendiular vector is
So,
(−2ˆi−3ˆj−6ˆk).(xˆi+yˆj+zˆk)=(−2ˆi−3ˆj−6ˆk).(−ˆi+ˆj+ˆk)
⇒2x+3y+6z=2−3−6
⇒2x+3y+6z=−7
Hence, this is the answer.