Given vectors →a=12^i+√32^j,→b=√32^j+12^k and →c=^i+2^j+3^k. Then the volume of a parallelepiped with three coterminous edges as →u=(→a⋅→a)→a+(→a⋅→b)→b+(→a⋅→c)→c,→v=(→a⋅→b)→a+(→b⋅→b)→b+(→b⋅→c)→c and →w=(→a⋅→c)→a+(→b⋅→c)→b+(→c⋅→c)→c equals
A
(2cos30∘−sin30∘)3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(2cos60∘−sin60∘)3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(2cos45∘−sin60∘)3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(2sin45∘−sin60∘)3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(2cos30∘−sin30∘)3 Volume of parallelepiped =|[→u→v→w]| =∣∣
∣
∣
∣∣∣∣
∣
∣
∣∣→a⋅→a→a⋅→b→a⋅→c→a⋅→b→b⋅→b→b⋅→c→a⋅→c→b⋅→c→c⋅→c∣∣
∣
∣
∣∣[→a→b→c]∣∣
∣
∣
∣∣ =∣∣∣[→a→b→c]3∣∣∣
Now, [→a→b→c]=∣∣
∣
∣
∣
∣∣12√3200√3212123∣∣
∣
∣
∣
∣∣ ⇒[→a→b→c]=14∣∣
∣
∣∣1√300√31123∣∣
∣
∣∣ ⇒[→a→b→c]=14[1(3√3−2)−√3(0−1)] =14[4√3−2]=√3−12 =2cos30∘−sin30∘
Hence, the volume of parallelepiped is (2cos30∘−sin30∘)3 cu. units.