wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given x=a2+b2+a2b2a2+b2a2b2. Using componendo and dividendo, prove that b2=2a2xx2+1.

Open in App
Solution

x1=a2+b2+a2b2a2+b2a2b2
x+1x1=a2+b2+a2b2+a2+b2a2b2a2+b2+a2b2a2+b2+a2b2
x+1x1=a2+b2a2b2
(x+1x1)2=a2+b2a2b2
(x+1)2(a2b2)=(a2+b2)(x1)2
(x2+1+2x)(a2b2)=(x2+12x)+(a2+b2)
x2a2x2b2+a2b2+2xa22xb2=x2a2+x2b2+a2+b22xa22xb2
4xa2=2x2b2+2b2
2xa2=x2b2+b2
b2(x2+1)=2xa2
b2=2xa2x2+1 .

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Componendo and Dividendo
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon