wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given: x=a2+b2+a2b2a2+b2a2b2
Use componendo and dividendo to prove that b2=2ax2xx3+1.

Open in App
Solution

x=a2+b2+a2b2a2+b2a2b2
Applying componendo and dividendo,
x+1x1=a2+b2a2b2
Squaring both sides :
(x+1x1)2=a2+b2a2b2
(x2+2x+1)(a2b2)=(a2+b2)(x22x+1)
=a2x2+2a2x+a2b2x22b2xb2
=a2x22a2x+a2+b2x22b2x+b2
2a2xb2x2b2=2a2x2+b2x2+b2
on 4a2x=2b2x2+2b2
2a2x=b2(x2+1)
b2=2a2xx2+1
Hence, proved.



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Componendo and Dividendo
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon