Given
A=⎡⎢⎣1−1342−1−131⎤⎥⎦∣A∣=∣∣
∣∣1−1342−1−131∣∣
∣∣=1(5)−1(3)+3(14)=44
A is non singular
let element of cofactor matrix is aij
a11=(−1)1+1∣∣∣2−131∣∣∣=+(2+3)
a12=(−1)1+2∣∣∣4−1−11∣∣∣=−(4−1)
a13=(−1)1+3∣∣∣42−13∣∣∣=+(12+2)
a21=(−1)2+1∣∣∣−1331∣∣∣=−(−1−9)
a22=(−1)2+2∣∣∣13−11∣∣∣=+(1+3)
a23=(−1)2+3∣∣∣1−1−13∣∣∣=−(3−1)
a31=(−1)3+1∣∣∣−132−1∣∣∣=+(1−6)
a32=(−1)3+2∣∣∣134−1∣∣∣=−(−1−12)
a33=(−1)+3∣∣∣1−142∣∣∣=+(2+4)
∴ cofactor matrix is ⎡⎢⎣+(2+3)−(4−1)+(12+2)−(−1−9)+(1+3)−(3−1)+(1−6)−(−1−12)+(2+4)⎤⎥⎦