given that
y=tan−151−6x2
Differentiate with respect to x
y=tan−151−6x2
dydx=11+(51−6x2)2×ddx(51−6x2)
=1−6x2(1−6x2)2+52×5(−1)1(1−6x2)2×ddx(1−6x2)
=−5(1−6x2)(1+36x4−12x2+25)(1−6x2)2×(0−12x)
=60x(1−6x2)(36x4−12x2+26)(1−6x2)2
=60x2(18x4−6x2+13)(1−6x2)
=30x(18x4−6x2+13)(1−6x2)