We are given
z1+z2+z3=A .....(1)
z1+z2ω+z3ω2=B ....(2)
z1+z2ω2+z3ω=C ....(3)
Adding (1), (2) and (3) , we get
3z1+z2(1+ω+ω2)+z3(1+ω2+ω)=A+B+C
or z1=A+B+C3 [∵(1+ω+ω2)=0]
now multiplying (1,) (2) and (3) by 1, ω2 , ω respectively and adding , we get
z1(1+ω2+ω)+z2(1+ω3+ω3)+z3(1+ω4+ω2)
=A+Bω2+Cω
or z2=A+Bω2+Cω3
[∵ 1 + ω4+ω2=1+ω+ω2=0 and ω3 = 1]
Similarly , z3=A+Bω+Cω23