Question 58 (h)
Subtract:
2(ab + bc + ca) from -ab - bc - ca.
We have, -ab - bc - ca - 2(ab + bc + ca) = - ab - bc - ca - 2ab - 2bc - 2ca On combining the like terms, = - ab - 2ab - bc - 2bc - ca - 2ca = - 3ab - 3bc - 3ca
ab−bc−ca from −ab+bc+ca.
Question 57 (c)
Add the following expression:
ab + bc + ca and - bc - ca - ab
In triangle ABC prove AB+BC+CA >2AB