A) Part 1 : - Recall how to find magnitude and direction of a vector.
Let us assume →C=^i+^j=Cx^i+Cy^j
|→C|=√(1)2+(1)2=√2 unit
Direction from x-axis:
tanθ=CyCx=1
θ=45∘
Similarly, for ^i−^j
Assume →B=Bx^i+By^j=^i−^j
|→B|=√B2x+B2y=√(1)2+(−1)2=√2 unit
Direction of B from x-axis:
tanϕ=ByBx=−1
ϕ=45∘ in clockwise sense.
B) Part 2 : - Component of one vector in the direction of another vector.
If →A&→B are two vectors and θ is the angle between them, then
→A.→B=|→A||→B|cosθ
Component of →A along →B is, |→A|cosθ=→A.→B|→B|
So, component of →A=2^i+3^j along the direction of →C=^i+^j,
Acosθ=→A.→C|→C|=(2^i+3^j).(^i+^j)√(1)2+(1)2
Acosθ=2+3√2=5√2unit.
Similarly, component of →A=2^i+3^j along the direction of →B=^i−^j,
Acosθ=→A.→B|→B|=(2^i+3^j).(^i−^j)√(1)2+(−1)2
=2−3√2=−1√2unit.