Let the line lx+my=1 passes through some fixed point, P≡(α,β) then lα+mβ=1....1(x′,y′)
If x′l=y′m=a+bam2−2hlm+bl2=x′+y′l+m....2 be the other center
x′l=y′m=αx′αl=βy′βm=αx′+βy′lα+βm
As =αx′+βy′[∵lα+mβ=1]
x′l=y′m=αx′+βy′
∵l=x′αx′+βy′,m=y′αx′+βy′
Putting these values in 2 we get
a+ba(y′αx′+βy′)2−2hx′αx′+βy′,y′αx′+βy′+b(x′αx′+βy′)2=x′+y′x′αx′+βy′+=y′αx′+βy′
or (a+b)(αx′+βy′)2ay′2−x′y′+bx′′2=(x′+y′)(αx′+βy′)x′+y′
Hence the required locus is
(a+b)(αx+βy)=ax2−2hxy+bx2