The integral is given as follows,
I= ∫ dx x( x n +1 )
Multiply and divide the given integral by x n−1 .
I= ∫ x n−1 dx x n−1 ×x( x n +1 ) = ∫ x n−1 dx x n ( x n +1 )
Substitute x n =t
Differentiate with respect to t.
n x n−1 dx=dt x n−1 dx= dt n
Substitute the values.
I= ∫ dx x( x n +1 ) I= ∫ x n−1 dx x n ( x n +1 ) = 1 n ∫ dt t( t+1 )
Use partial fraction to reduce function.
1 t( t+1 ) = A t + B t+1 1=A( t+1 )+Bt
Substitute t=−1.
B=−1
Substitute t=0.
A=1
Now substitute the values.
I= 1 n ∫ dt t( t+1 ) = 1 n ∫ dt t − 1 n ∫ dt ( t+1 ) = 1 n [ log| t |−log| t+1 | ]+C
Substitute x n for t.
I= 1 n [ log| x n |−log| x n +1 | ]+C I= 1 n log| x n x n +1 |+C